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1. 

This technical note describes the evaluation and selection of equations used to
predict the sound transmission loss (STL) of a single-layer panel. While one can
measure the sound transmission loss of panels experimentally, it is time-consuming
and expensive to prepare the samples and conduct the tests. Hence, one would like
to calculate the STL of panels to minimize laboratory testing. While the
transmission loss of single-layer windows was the primary objective of this study,
the results are applicable to any single-layer panel.

2.  

The predicted STL values were compared to experimental data. The sound
transmission loss measurements in the experimental portion of this study were
made on rectangular windows constructed of either glass or transparent
polycarbonate, with the dimensions of 0·61 by 0·91 m. Several different thicknesses
of each were tested. The sound transmission loss tests were conducted at ETL
Testing Laboratories, Cortland, New York. The testing was in accordance with
the standard procedure in ASTM E90-90 [1]. The glass samples were mounted in
a wooden frame, and were held in place with ‘‘Duxseal,’’ a dense, clay-like
material. The sound transmission loss data were provided in 1/3-octave bands,
with the centre-band frequencies ranging from 100 to 4000 Hz.

3.    

3.1. Mass law–Cremer model
The goal of this study was to find simple, empirical expressions for sound

transmission loss. At low frequencies, one can calculate the STL of a typical panel
with the mass law, where the transmission loss of the panel depends only upon
the frequency of the sound and the mass per unit area of the wall. There are several
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forms of the mass law, which give essentially equivalent results. One form of the
field-incidence mass law is

TL(dB)=10 log10 61+0mpf
r0c01

2

7−5, (1)

where TL is the transmission loss in 1/3-octave bands, f is the centre frequency
of each band, m is the mass per unit area of the panel, r0 is the density of air, and
c0 is the speed of sound in air. The mass law is only valid below the coincidence
frequency. Below the coincidence frequency, the transverse bending wavelength of
the panel in question is smaller than the wavelength of an acoustic wave in air at
the same frequency. At the coincidence frequency, the bending wave of the panel
and the acoustic wave in air have equal lengths. Above the coincidence frequency,
the bending wave is longer than the acoustic wavelength. One can calculate the
coincidence frequency for a single-layer panel:

fc =
c2

0

2pX12m(1− n2)
Eh3 , (2)

where n is the Poisson ratio, E is Young’s modulus, and h is the panel thickness.
Using the material properties for glass, the coincidence frequency is approximately

fc,glass =
12350

h
Hz, (3)

where h is the thickness in millimetres. For example, the coincidence frequency of
4·9-mm thick glass is 2520 Hz.

Since the mass law is only valid below the coincidence frequency, one needs
another expression to compute the STL at higher frequencies. Cremer [2] derived
the following expression for the transmission loss of panels above coincidence:

TL(dB)=20 log10 0mpf
r0c01+10 log10 02hf

fc 1−5, (4)

where h is the damping loss factor of the panel. One might prefer to use measured
values for the loss factor. This study used a value of h=0·025 throughout, which
represented an average value based upon previous measurements [3].

Hence, one can construct an STL model using Cremer’s equation above
coincidence and the mass law below. Figure 1 shows the experimental results for
the STL of 4·9-mm thick glass compared to the mass law/Cremer prediction. The
agreement of this model with experimental results is poor, especially at frequencies
near coincidence.

3.2. Mass law–Sharp–Cremer model
The disparity between the mass law/Cremer prediction and experiment at

frequencies near coincidence—the so-called ‘‘coincidence dip’’—is well known,
and others have tried to correct for this. Sharp proposed a successful, empirical
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Figure 1. A comparison of the sound transmission loss predicted using the mass law–Cremer
scheme and the experimental results for 4·9-mm thick glass: r, predicted; W, experimental.

method [4]. Since the mass law predicts the STL at frequencies greater than
one-half the coincidence frequency so poorly, Sharp suggested using a linear
interpolation scheme between the mass law STL at one-half of the coincidence
frequency and the STL found with Cremer’s expression at the coincidence
frequency. This correction worked well (see Figure 2), reducing the disparity
between predication and experiment in the range from fc /2 to fc .

Figure 2. A comparison of the sound transmission loss predicted using the mass
law–Sharp–Cremer scheme and the experimental results for 4·9-mm thick glass: r, predicted; W,
experimental.
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Figure 3. A comparison of the sound transmission loss predicted using the SSC scheme and the
experimental results for 4·9-mm thick glass: r, predicted; W, experimental.

3.3. Sewell–Sharp–Cremer model
There is still the problem of the under-prediction of the transmission loss at low

frequencies. Some improvement over the mass law would be helpful. Sewell [5]
derived the following expression based upon theoretical considerations of the
forced transmission of sound through a partition:

TL(dB)=−10 log10 g
G

G

F

f

ln(kzA)+0·16−U(L)+
1

4pAk2
0

$0mpf
r0c0101−

f 2

f 2
c1%

2 h
G

G

J

j

, (5)

where k0 is the acoustic wavenumber, A is the area of the plate, L is the ratio of
the lengths of the sides of the plate, and U(L) is a shape factor correction for
non-square plates. A useful empirical expression for U(L) adapted from Sewell
is

U(L)= −0·0000311L5 +0·000941L4

−0·0107L3 +0·0526L2 −0·0407L−0·00534. (6)

Sewell’s expression, equation (5), led to better agreement with experimental data
at low frequencies than the mass law. This expression is for forced transmission,
and strictly speaking one should add the contribution from resonant transmission.
However, the resonant component is several dB lower than the forced component,
and will not affect the calculated transmission loss significantly.

To summarize, the best agreement with experimental data was obtained with
the following equations: below fc /2—equation (5), from Sewell; from fc /2 to
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Figure 4. A comparison of the sound transmission loss predicted using the SSC scheme
and the experimental results for 3·3-mm thick glass: r, predicted; W, experimental.

fc—Sharp’s linear interpolation scheme; above fc—equation (4), from Cremer. Due
to the sources of these expressions, this report will refer to the prediction scheme
combining the three equations as the Sewell–Sharp–Cremer or SSC model.

4.       

The predicted STL using the SSC scheme was compared to experimental values
obtained at ETL Laboratories for 4·9-mm thick glass (Figure 3). The predicted

Figure 5. A comparison of the sound transmission loss predicted using the SSC scheme
and the experimental results for 4·8-mm thick polycarbonate: r, predicted; W,
experimental.
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Figure 6. A comparison of the sound transmission loss predicted using the SSC scheme
and Quirt’s experimental results for 4·0-mm thick glass: r, predicted; W, experimental.

STL agreed with the experimental results within 2·5 dB. Next, the SSC prediction
scheme was applied to 3·3-mm thick glass. The agreement was again quite good,
with a maximum disparity of 2·3 dB (see Figure 4). To see how the SSC scheme
worked for materials other than glass, the calculated STL of a 4·8-mm thick
polycarbonate window was compared to experiment. The prediction matched the
experimental results quite well over the entire frequency range, with a maximum
disparity of 3 dB (see Figure 5).

Next, the SSC scheme was compared with experimental data obtained under
different conditions. Quirt [6] gave results for STL measurements made on
0·56×1·68 m windows. The agreement between the SSC prediction scheme and
this experimental data was not as good, with a disparity of approximately 5 dB
at frequencies above coincidence, using a loss factor of h=0·025 (see Figure 6).
The agreement between prediction and experiment improved considerably when
actual measured damping values were used. However, this defeats the purpose of
the prediction scheme, as one has merely substituted the rather involved and
difficult measurement of the damping value of a panel for the measurement of the
STL itself.

The inherent weakness of any STL prediction scheme is that the damping value
affects the calculated STL above coincidence to a great degree. However, one can
still get acceptable results with reasonable estimates for the damping values of
single layer panels, which are largely dependent upon the edge conditions.
Conversely, for laminated panels, the majority of the damping occurs in the middle
laminated ply of the window itself, and one can calculate the approximate
damping level of the laminated assembly, circumventing the problem. However,
this procedure is rather involved [7], and will not be described here.
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5. 

A combination of the STL prediction methods presented by Sewell, Sharp and
Cremer was found to agree well with experimental data. This procedure is simple
and easy to use, and is a useful tool for automobile window engineers and others
interested in the prediction of the sound transmission loss of barriers and
partitions.
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